Vzdělávací modul
Člověk a příroda ve vzdělávací oblasti Chemie

Testy ve výuce chemie: návrhy a proces tvorby

Karel Vojíř, Martin Rusek a kol.

Zvýšení kvality vzdělávání žáků, rozvoje klíčových kompetencí, oblastí vzdělávání a gramotností

Pedagogická fakulta, Univerzita Karlova, 2019
Vzdělávací modul Člověk a příroda ve vzdělávací oblasti Chemie

Testy ve výuce chemie: návrhy a proces tvorby

Karel Vojíř, Martin Rusek a kol.
Vzdělávací modul Člověk a příroda ve vzdělávací oblasti Chemie

Testy ve výuce chemie: návrhy a proces tvorby

Publikace vznikla v rámci projektu Zvýšení kvality vzdělávání žáků, rozvoje klíčových kompetencí, oblasti vzdělávání a gramotnosti, reg. č. CZ.02.3.68/0.0/0.0/16_011/0000664 (2017–2019), financováno z Evropských sociálních fondů, řešiteli projektu jsou Univerzita Karlova, Masarykova univerzita, Jihočeská univerzita v Českých Budějovicích, Technická univerzita v Liberci a META, o.p.s.

Publikace je určena ke vzdělávacím účelům.

Hlavní manažer projektu Univerzity Karlovy:
doc. PhDr. PaedDr. Anna Kucharská, Ph.D.

Manažer projektu Masarykovy univerzity:
doc. PhDr. Petr Knecht, Ph.D.

Manažer projektu Jihočeské univerzity v Českých Budějovicích:
doc. RNDr. Helena Koldová, Ph.D.

Manažer projektu Technické univerzity v Liberci:
doc. RNDr. Miroslav Brzezina, CSc.

Manažer projektu – META, o.p.s.:
PhDr. Kristýna Titěrová

Autoři publikace: Karel Vojíř, Martin Rusek a kol.

Řešitelský kolektiv: Karel Vojíř, Martin Rusek, Milada Teplá, Hana Čtnáctová, Petr Šmejkal, Martin Slavík, Eva Marádová, Martina Trpišovská, Pavlína Hartmanová, Renata Nováková, Jana Šindelářová, Ondřej Solnička, Hana Kozelková, Radka Vydrová, Daniela Halamková, Ivana Matějovicová, Miluše Švehlová

Garant vzdělávacího modulu Člověk a příroda ve vzdělávací oblasti Chemie:
Martin Rusek

Recenzent: prof. PhDr. Jiří Škoda, Ph.D.

Vydala: Univerzita Karlova, Pedagogická fakulta v r. 2019

© Univerzita Karlova, Pedagogická fakulta
ISBN: 978-80-7603-149-4
Abstrakt

Tato příručka obsahuje metodiku tvorby a konkrétní ukázky hotových testů pro učivo chemie na základní škole. Cílem bylo vytvořit minimálně jeden test pro každé téma z učiva chemie pro základní školu vycházející z RVP ZV. Nedílnou součástí je i představení metodiky hodnocení testů, tedy nástroj k tomuto účelu vytvořený Českou školní inspekcí. Nástroj byl využit ke zhodnocení a k následné optimalizaci stávajících testů učitelů zapojených do projektu.

Klíčová slova
tvorba textů; hodnocení testů; výuka chemie

Abstract

This manual contains the procedure of production and concrete illustrations of tests targeting at lower-chemistry subject matter. The goal was to create at least one test per topic in lower-secondary chemistry subject matter as defined in the national curriculum. An integral part of this manual is introduction of a tool developed by the Czech school inspectorate for test evaluation. The tool was used to evaluate and further optimize contemporary tests of the teachers engaged on the project.

Keywords
tests creation; test evaluation; chemistry education
Obsah

ÚVOD .. 5

1. METODIKA TVORBY TESTŮ... 6
 1.1. Kognitivní náročnost ... 6
 1.2. Variabilita zařazených úloh dle typologie jejich zadání.. 8
 1.3. Formulace zadávaných úloh ... 9
 1.4. Ukázka postupu tvorby testu – Směsi .. 10
 1. varianta testu ... 10
 2. varianta testu ... 11
 3. varianta testu ... 12
 Hodnocení testů ... 13

2. NÁVRHY TESTŮ .. 15
 2.1. Pozorování pokus a bezpečnost práce ... 15
 Vlastnosti látek .. 15
 2.2. Směsi ... 16
 Směsi ... 16
 2.3. Částicové složení látek a chemické prvky ... 18
 Stavba atomu I ... 18
 2.4. Chemické reakce ... 20
 Faktory ovlivňující rychlost chemické reakce .. 20
 2.5. Anorganické sloučeniny .. 21
 Oxidy .. 21
 3.1. Organické sloučeniny ... 23
 Proteiny, sacharidy a lipidy .. 23
 3.2. Chemie a společnost .. 25
 Plasty a syntetická vlákná ... 25
 Hořlaviny a hašení požáru ... 27

4. SUMMARY ... 29
Úvod

Příručka představuje metodiku tvorby testů využitou a ověřenou ve společenství praxe projektu Zvýšení kvality vzdělávání žáků, rozvoje klíčových kompetencí, oblastí vzdělávání a gramotnosti. Popsaná metodika cílí na zajištění dostatečné variability typologie úloh zadávaných v testech, jakož i diverzifikaci kognitivní náročnosti těchto úloh. Díky tomu sestavované testy cílí na široké spektrum znalostí a dovedností žáka, které ověřují i rozvíjejí.

V příručce jsou uvedeny vzorové testy zaměřující se na učivo jednotlivých tematických celků. Díky jejich ověření ve vztahu k teoretickým východiskům i v praxi mohou tyto testy být bez nutnosti dalších úprav využity ve výuce chemie na základní škole. Zároveň mohou posloužit jako inspirace při tvorbě dalších školních testů, se kterou se vyučující pravidelně setkávají ve své praxi.
1. Metodika tvorby testů

Východiskem pro tvorbu inovovaných testů zaměřených na učivo vzdělávacího oboru chemie se staly testy, které učitelé zapojení do společenství praxe využívají ve své praxi. Tyto testy byly společně reflektovány a kvalitativně zhodnoceny. Na základě těchto podkladů byly v akčních skupinách sestávajících ze dvou až tří učitelů sestaveny testy inovované. V průběhu tvorby byly jednotlivé položky konzultovány s oborovými didaktiky i pracovníky pedagogicko-psychologické přípravy. Takto připravené testy byly v dalším kroku hodnoceny dalšími učiteli. Hodnocení sestávalo ze tří částí:

- kognitivní náročnost zařazených úloh,
- variabilita zařazených úloh dle typologie jejich zadání a
- správnost formulace zadání.

Na základě hodnocení byl návrh testu přepracován autory a opětovně hodnocen. Tento postup se opakoval vždy nejméně třikrát. Cílem tohoto procesu bylo vytvoření kvalitních testů, které budou v rámci školní praxe dostatečně korespondovat s cíli vzdělávání. Diferenciaci zaměření kognitivní náročnosti na jednoduché i složité myšlenkové operace postihuje komplexnost procesu učení. Různé formy zadání úloh stimulují žáky k lišícím se postupům řešení a přispívají tak k rozvoji kompetence k řešení problémů. Ta se nezakládá pouze na osvojení si dílčího fixního postupu řešení typizovaných školních úloh, ale vyžaduje širokou variabilitu uvažování.

1.1. Kognitivní náročnost

K hodnocení intelektové náročnosti zařazených úloh byla využita taxonomie učebních úloh zpracovaná D. Tollingerovou (1986). Pro vyšší využitelnost a vzhledem k povaze informací ve vzdělávacím oboru Chemie byla poslední dvě kritéria sloučena do jednoho.

I. úlohy vyžadující pamětní reprodukci poznatků (reprodukce – výsledek, vštípení, podržení a vybavení informací z paměti)

Kolik (stupňů má)…	Kdy (v kterém roce)…
Jak velký je…	Jak zní (definice)…
Jak zíVN vzorec pro…	Co je…
Kdo objevil…	Která z alternativ (znovupoznání)
Jak se nazývá…	Definuj…
Reprodukuj text…	Uveď pravidlo…

II. úlohy vyžadující jednoduché myšlenkové operace s poznatky

Zjistěte… (kolik měří)	Proveďte rozbor…
Popište…	Čím se liší…
Vyjmenujte (části)…	Porovnejte…
Vyjmenuje (procesy)	Určete shody a rozdíly…
Udělejte soupis… Jak se dělí…
Popište,… (jak probíhá) Podle kterého kritéria se dělí…
Řekněte,… (jak se vyrábl) Co se stane, když…
Jaký potup je při… Jaký vliv na … má…
Proč… Co je přičinou…
Jakým cílům slouží… Jaký vztah… k…
Jakou funkci… Porovnej vzájemně…
Jakým způsobem… Jakými prostředky lze dosáhnout cíle…

III. úloha vyžadující složité myšlenkové operace s poznatky

Podle vzorce… vypočtěte… Jak rozumíte…
Označte ve schématu… Proč myslíte, že…
Udělejte schématický nákres… Co myslíte, že se stane, když…
Přečtěte diagram… Jsou dány… Určete…
Přečtěte vzorec… Dokažte, že…
Napište vzorcem… Ověřte správné, když…
Vysvětlete význam… Zhodnořte význam…

IV. a V. úlohy vyžadující sdělení poznatků náročnými formami a úlohy vyžadující kreativní (tvořivé) myšlení

Jak se dá v praxi využít… Formulujte úlohu na téma…
Navrhněte novou praktickou aplikaci… Formulujte dotazy k…
Na základě vlastního pozorování… Jsou dány… Sestavte otázku.
Udělejte stručný výtah… Narýsujte… (složitý rys)
Udělejte přehled… Vypracujte zprávu o …
Napište stručný obsah… Vypracujte projekt…

V hodnocení testů byla sledována doporučení projektu České školní inspekce NIQES („NIQES“, 2015). Dle těchto doporučení by podíl úloh kategorie I. měl být minimálně 10 %, úloh kategorie II. minimálně 25 % a úloh kategorie III. minimálně 25 % a je rovněž žádoucí zařazení úloh kategorií IV. a V. cílících na kreativní myšlení a vyjadřování složitými formami.

Při hodnocení bylo využíváno záznamové tabulky, do které hodnotící učitelé zapisovali kategorie jednotlivých testových úloh a následně vyhodnocovali podíly zastoupení úloh daných úrovní kognitivní náročnosti. Tento proces ilustruje příklad hodnocení první varianty testu Stavba atomu a chemická vazba (viz tabulku 1). V tomto testy byly zastoupeny pouze úlohy na I. a II. úrovni. V dalších úpravách byl proto tento test přepracován, aby obsahoval úlohy i vyšších kategorií.
Tabulka 1 Hodnocení kognitivní náročnosti u 1. varianty testu Stavba atomu a chemická vazba

<table>
<thead>
<tr>
<th>Kategorie úlohy</th>
<th>číslo otázky</th>
<th>celkem</th>
<th>výskyt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>I.</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>II.</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>III.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV. a V.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2. Variabilita zařazených úloh dle typologie jejich zadání

Otevřené úlohy

Na základě délky odpovědi, kterou žák samostatně tvoří, je možné otevřené úlohy dále dělit na:

- Otevřené úlohy se širokou formou odpovědi
- Otevřené úlohy se stručnou formou odpovědi

Zatímco v úlohách se širokou formou odpovědi žák vytváří strukturovaný text s vyšší provázaností, stručnou odpovědí je krátké vyjádření, jakým může být například číslo, symbol, značka, vzorec, pojem nebo matematický vztah.

Uzavřené úlohy

Schémata
Specifickou subkategorií úloh tvoří úlohy pracující se schématy. V těchto úlohách žák nepra-
cuje pouze s textovým zadáním, ale i s vizuálním vyjádřením. Tyto myšlenkové operace se
výrazně odlišují, nebot jsou po žákoví vyžadovány zcela odlišné postupy porozumění infor-
mační reprezentaci. V těchto úlohách čári pracují s již zadanými schématy, která popisují,
nebo jsou sami aktivními tvůrci schémat.

Zastoupení jednotlivých typů úloh
Na základě doporučení projektu České školní inspekce NIQES („NIQES“, 2015) bylo v tvorbě
testů sledováno, zda obsahují min. 25 % úloh s otevřenou formou odpovědi, 25 % úloh s uz-
avřenou formou odpovědi a alespoň 10 % úloh využívajících schémat. Hodnocení variability
úloh probíhalo analogicky hodnocení kognitivní náročnosti, přičemž počet úloh patřících
do daných kategorií byl zaznamenáván do tabulky (viz tabulka 2).

Tabulka 2 Záznamový arch pro hodnocení variability úloh v testech na základě typologie jejích
zadání

<table>
<thead>
<tr>
<th>Typy úloh</th>
<th>počet úloh daného typu</th>
</tr>
</thead>
<tbody>
<tr>
<td>otevřené</td>
<td>se širokou odpovědí</td>
</tr>
<tr>
<td></td>
<td>se stručnou odpovědí</td>
</tr>
<tr>
<td>uzavřené</td>
<td>dichotomické</td>
</tr>
<tr>
<td></td>
<td>s výběrem odpovědi</td>
</tr>
<tr>
<td></td>
<td>přířazovací</td>
</tr>
<tr>
<td></td>
<td>uspořádací</td>
</tr>
<tr>
<td>schémata</td>
<td>popisuje schéma</td>
</tr>
<tr>
<td></td>
<td>vytváří vlastní schéma</td>
</tr>
</tbody>
</table>
| Další (křížovky, doplňovačky,
 osmisměrky apod.) | |

1.3. Formulace zadávaných úloh
Posledním, avšak rozhodně ne nevýznamným aspektem hodnocení vytvářených testů bylo
hodnocení formulací zadání úloh. Hodnocení se zaměřovalo zejména na srozumitelnost
zadání, jeho odbornou správnost, jednoznačnost, přiměřenost věku žáků apod. Hodnocení
bylo poskytováno volným vyjádřením a konzultováno ve společenství učitelů, oborových
didaktiků i pracovníků pedagogicko-psychologické přípravy.
1.4. Ukázka postupu tvorby testu – Směsi

1. varianta testu

1. Vysvětlí pojem směs.

2. Porovnej pojmy mlha a dým, vysvětlí je na konkrétním příkladu.

3. Rozpouštíme cukr v čaji. Jakým způsobem bychom ho mohli rozpustit rychleji?
 a. ..
 b. ..
 c. ..

4. K dezinfekci pitné vody se používá Chloramin T – univerzální práškový dezinfekční prostředek. Připravený dezinfekční roztok má koncentraci 5 %. Kolik gramů Chloraminu T jsme museli nasypat do 6 l vody, abychom daný roztok připravili?

5. Nasycený roztok je:
 a. směs vody a písku
 b. roztok, ve kterém se další látky za daných podmínek již nerozpustí
 c. lihový roztok naftalenu

<table>
<thead>
<tr>
<th>vlastnost, kterou se složky liší</th>
<th>název metody</th>
<th>použité pomůcky</th>
<th>oddělované složky směsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. krok</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. krok</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. krok</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. varianta testu

2. Porovnej pojmy mlha a dým a rozdíly vysvětluj na konkrétním příkladu.

 a. ...

 b. ...

 c. ...

5. Vyber jednu správnou variantu doplňující tvrzení: Nasycený roztok je...

 a. směs vody a písku

 b. roztok, ve kterém se další látky za daných podmínek již nerozpustí

 c. lihový roztok naftalenu

<table>
<thead>
<tr>
<th>vlastnost, kterou se složky liší</th>
<th>název metody</th>
<th>použité pomůcky</th>
<th>oddělované složky směsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. krok</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. krok</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. krok</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Graficky znázorněte schéma aparatury na oddělení pevné složky od kapalné.
3. varianta testu

2. Porovnej pojmy mlha a dým a rozdíly vysvětlí na konkrétním příkladu.

 a. ..
 b. ..
 c. ..

5. Vyber jednu správnou variantu doplňující tvrzení: Nasycený roztok je...

 a. směs vody a písku
 b. roztok, ve kterém se další látku za daných podmínek již nerozpustí
 c. lihový roztok naftalenu

<table>
<thead>
<tr>
<th>vlastnost, kterou se složky liší</th>
<th>název metody</th>
<th>použité pomůcky</th>
<th>oddělované složky směsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. krok</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. krok</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. krok</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Graficky znázorní a popiš schéma, které bude vyjadřovat aparaturu na oddělení pevné složky od kapalné.
8. Vyřeš křížovku

1. Jak se nazývá směs kapalné a pevné látky?
2. Jak se nazývá směs dvou nemísitelných kapalin?
3. Jak se nazývá směs plynu v kapalině?
4. Jak se nazývá směs mlhy, prachu a kouře?

Hodnocení testů

Intelektová náročnost

intelektová náročnost — 1. varianta testu

<table>
<thead>
<tr>
<th>Kategorie úlohy</th>
<th>Číslo otázky</th>
<th>celkem</th>
<th>výskyt</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>x</td>
<td>1</td>
<td>17 %</td>
</tr>
<tr>
<td>II.</td>
<td>x</td>
<td>x</td>
<td>2</td>
</tr>
<tr>
<td>III.</td>
<td>x</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>IV. a V.</td>
<td>x</td>
<td>x</td>
<td>2</td>
</tr>
</tbody>
</table>

intelektová náročnost — 2. varianta testu

<table>
<thead>
<tr>
<th>Kategorie úlohy</th>
<th>Číslo otázky</th>
<th>celkem</th>
<th>výskyt</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>x</td>
<td>1</td>
<td>14,5 %</td>
</tr>
<tr>
<td>II.</td>
<td>x</td>
<td>x</td>
<td>2</td>
</tr>
<tr>
<td>III.</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>IV. a V.</td>
<td>x</td>
<td>x</td>
<td>2</td>
</tr>
</tbody>
</table>
intelektová náročnost – 3. varianta testu

<table>
<thead>
<tr>
<th>Kategorie úloh</th>
<th>Číslo otázky</th>
<th>celkem</th>
<th>výskyt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>I.</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>II.</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III.</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV. a V.</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Varianta testu č. 1 obsahuje stejný podíl úloh vyžadujících pamětní reprodukci poznatků a složité myšlenkové operace a shodný podíl úloh vyžadujících jednoduché myšlenkové operace a úloh vyžadujících kreativní myšlení.

Varianta testu č. 2 obsahuje nejmenší podíl úloh vyžadujících pamětní reprodukci poznatků. Ostatní úlohy jsou zastoupeny rovnoměrně.

Varianta testu č. 3 má rovnoměrně zastoupeny všechny typy úloh dle kognitivní náročnosti.

Variabilita typů úloh dle způsobu jejich řešení

<table>
<thead>
<tr>
<th>Celkový počet úloh</th>
<th>test 1</th>
<th>test 2</th>
<th>test 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typy úloh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>otevřené se širokou odpovědí</td>
<td>3 (č.1,2,4)</td>
<td>3 (č.1,2,4)</td>
<td>3 (č.1,2,4)</td>
</tr>
<tr>
<td>se stručnou odpovědí</td>
<td>2 (č.3,6)</td>
<td>2 (č.3,6)</td>
<td>2 (č.3,6)</td>
</tr>
<tr>
<td>dichotomické</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>výběrem odpovědí</td>
<td>1 (č.5)</td>
<td>1 (č.5)</td>
<td>1 (č.5)</td>
</tr>
<tr>
<td>přírazovací</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>uspořádací</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>schémata popisuje schéma</td>
<td>1 (č.7)</td>
<td>1 (č.7)</td>
<td></td>
</tr>
<tr>
<td>vytváří vlastní schéma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Další (křížovky)</td>
<td>1 (č.8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Návrhy testů

2.1. Pozorování pokus a bezpečnost práce

Vlastnosti látek

1. Michal zkoumal vlastnosti látek. Do tří kádinek nalil 100 ml vody a do každé v nich nasypal odvážené množství jedné látky. Obsah kádinek zamíchal a pozoroval změny. Napiš, kterou vlastnost látek Michal nejspíše zkoumal.

2. Vyber z nabídky vlastnosti látek, které lze určit na základě pozorování. Vybrané vlastnosti zakroužkuj.

• Elektrická vodivost
• Barva
• Lesk
• Kyselost
• Skupenství
• Hustota
• Tvrđost

3. Navrhně možné způsoby dělení uvedených látek podle jejich společných vlastností. Řešení zapiš.

Minerální voda, bramborová polévka, černá káva, sklo, cukr, čerstvě vymačkaná citronová šťáva, kypřicí prášek

4. Do schémat kádinek zakresli, jak bude vypadat výsledný stav.

A: 10 ml lihu + 50 ml vody
B: 20 ml oleje + 40 ml vody
C: 10 g cukru + 30 ml vody

Schémata popiš.
2.2. Směsi

Směsi

2. Porovnej pojmy mlha a dým a rozdíly vysvětlí na konkrétním příkladu.

 a. ..
 b. ..
 c. ..

5. Vyber jednu správnou variantu doplňující tvrzení: *Nasycený roztok je*...

 a. směs vody a písku
 b. roztok, ve kterém se další látka za daných podmínek již nerozpustí
 c. lihový roztok naftalenu
6. V nádobě je směs **písku, železných hoblin, vody** a **kuchyňské soli**. Navrhněte postup, jak tyto složky směsi od sebe oddělit. Jaké pomůcky použijete, jaké složky se ze směsi se tímto krokem oddělí a jakou vlastností se složky liší? Řešení zapište do tabulky.

<table>
<thead>
<tr>
<th>vlastnost, kterou se složky liší</th>
<th>název metody</th>
<th>použité pomůcky</th>
<th>oddělované složky směsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. krok</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. krok</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. krok</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Graficky znázorněte a popište schéma, které bude vyjadřovat aparaturu na oddělení pevné složky od kapalné.

8. Vyřešte křížovku

1. Jak se nazývá směs kapalné a pevné látky?
2. Jak se nazývá směs dvou nemísitelných kapalin?
3. Jak se nazývá směs plynu v kapalíně?
4. Jak se nazývá směs mlhy, prachu a kouře?
2.3. Částicové složení látek a chemické prvky

Stavba atomu I

1. Doplň volná pole schématu vyjadřujícího stavbu atomu. Ke každé části atomu nebo částici, ze které se skládá, zapiš náboj.

![Atom schema](image)

2. Napiš počty nukleonů, protonů, neutronů a elektronů u následujících prvků.

 a. \(^{14}N \)
 b. \(^{14}C \)
 c. \(^{1}H \)

3. Přečti si níže uvedená tvrzení a zakroužkuj ty, která jsou správně. Chybná tvrzení oprav.

 a. Kyslík je v atmosféře obsažen ze 78 %.
 b. Molekula \(O_2 \) je tvořena dvěma atomy dusíku.
 c. Elektrony v jádře atomu mají záporný náboj.
 d. Elektronegativita je schopnost, kterou si atom přitahuje elektrony směrem k sobě.
 e. Nejvyšší elektronegativitu má prvek fluor, jehož chemická značka je P.

4. Napiš název prvku \(^{12}X \). Urči kolik protonů, neutronů a elektronů se v tomto atomu nachází.
5. Přečti si text a písemně odpověz na následující otázky.

a) Které prvky se v přírodě vyskytují jako volné atomy?
b) Co k sobě poutá jednotlivé atomy v molekulách?
c) Co ovlivňuje pevnost vazby?
d) O jakou vazbu se jedná v případě, že ji tvoří tři elektronové páry?
e) Vypiš, které vazby mohou vznikat mezi jednotlivými atomy.

a. Na a Na+

b. Cl a Cl−

7. Nakresli schéma, které bude vyjadřovat obsazení jednotlivých elektronových vrstev v atolu kyslíku.
2.4. Chemické reakce

Faktory ovlivňující rychlost chemické reakce

1. Paní Kalivodová topí na chatě uhlím.

a. Vyber chemickou reakci, kterou je možné popsat hoření uhlí. Správnou možnost zakroužkuj.

 (1) \(C + O_2 \rightarrow CO + CO_3 \)
 (2) \(C + O_2 \rightarrow CO_2 \)
 (3) \(O_2 + CO_2 \rightarrow CO + C \)
 (4) \(C + CO_2 \rightarrow O_2 \)

b. Vysvětli, proč je možné záklopkou regulující přívod vzduchu do kamen ovlivňovat rychlost hoření uhlí?

2. V laboratoři je možné provést reakci, kterou popisuje rovnice \(Zn + 2HCl \rightarrow ZnCl_2 + H_2 \).

b. Rozhodni o pravdivosti tvrzení: Pokud zkumavku s reakční směsí umístíme do vodní lázně s ledem, rychlost reakce se sníží. Správnou odpověď zakroužkuj.

 (1) Ano
 (2) Ne
2.5. Anorganické sloučeniny

Oxidy

1. Níže je popsáno několik oxidů. Na základě uvedených vlastností a vzniku u každého popisu uveď, o jaký oxid by se mohlo jednat. Napiš jeho název a chemický vzorec.

- bezbarvý plyn, dokonalé spalování paliv, uvolňování při dýchání
 název oxidu: vzorec:

- bezbarvý plyn, spalování nekvalitních paliv, štiplavý zápach
 název oxidu: vzorec:

- pevná, práškovitá, bílá, žíravá látka, pálení vápence
 název oxidu: vzorec:

- nepodporuje hoření, sycené nápoje, hasicí přístroje
 název oxidu: vzorec:

- nedostatečné spalování paliv, nedostatečné zásobování buněk kyslíkem, cigarety
 název oxidu: vzorec:

- stavebnictví, zemědělství
 název oxidu: vzorec:

2. Spoj uvedené názvy oxidů s příslušnými vzorci

- SO₃ oxid vápenatý
- Al₂O₃ oxid křemičitý
- SiO₂ oxid sírový
- MgO oxid draselný
- K₂O oxid hlinitý
- CaO oxid hořečnatý

3. S oxidy se setkáváme každý den. Napiš alespoň dva příklady oxidů, se kterými se setkáváš v každodenním životě, a vysvětli, v jaké situaci to je.
4. Popište schéma vyjadřující molekulu oxidu uhličitého.
3.1. Organické sloučeniny

Proteiny, sacharidy a lipidy

1. Napiš příklady alespoň dvou monosacharidů. U každého z nich uveď, kolik atomů uhlíku je v jedné molekule.

2. Porovnej škrob a celulózu. Napiš, co mají společného a v čem se tyto látky odlišují.

3. Přiřaď správné charakteristiky k uvedeným názvům disacharidů.

 a. Sacharóza
 b. Maltóza
 c. Laktóza

 1. Vyskytuje se v mateřském mléce savců. Tento sacharid se používá k výrobě tabletek různých léků.
 2. Nejpoužívanější cukr, vyrábí se z cukrové třtiny nebo z cukrové řepy.

 a. Hroznový cukr neboli fruktóza je pro člověka významný energetický zdroj.
 b. Základní stavební jednotkou proteinů jsou thiokyseliny.
 c. Škrob je hojně obsažen mimo jiné i ve dřevě a tuhých částech rostlin.
 d. Lipidy dělíme do třech velkých skupin. Tuky, vosky a margaríny.
 e. Nasycené mastné kyseliny již neobsahují žádnou násobnou vazbu.

5. Napiš, z jakých dvou hlavních částí se skládá molekula tuku. Uveď názvy i vzorce.
6. Nakresli vzorec peptidu skládajícího se z dvou aminokyselin a vyznač peptidickou vazbu.

7. Ke každému z uvedených názvů napiš chemický vzorec.
 a. Metanol
 b. Cyklopentan
 c. Kyselina octová
 d. Prop-1,2,3-triol (glycerol)

8. Ke každému z uvedených chemických vzorců doplň název.
 a. CH₃-CH₂-CH₃
 b. CH₃-CH₂-OH
 c. CH₃-(CH₂)₅-CH₃
 d. H₂O
 e. C₆H₁₂O₆ (Produkt fotosyntézy)
3.2. Chemie a společnost

Plasty a syntetická vlákna

1. Posuďte správnost uvedeného textu a opravte chyby.

Plasty jsou přírodní makromolekulární látky, z nichž většina není tvarovatelná teplem. Mají vysokou hustotu a jsou odolné vůči mechanickému opracování.

2. V současnosti jsou plasty součástí téměř všech výrobků. Výrobky z plastů mají samozřejmě mnoho výhod, ale mají i své nevýhody. U každé z následujících vlastností rozhodněte, zda se jedná o výhody (+), nebo nevýhody (-) plastů.

Výrobky z plastů většinou jsou:

- lehké
- nepříliš odolné vůči vyšším teplotám
- dobré elektrické a tepelné izolátory
- odolné vůči působení ovzduší a vody
- hořlavé
- snadno tvarovatelné
- chemicky odolné
- dobře barvitelné

3. Od 1. 1. 2018 jsou na základě novely zákona o obalech obchodníci povinni zpoplatnit plastové odnosné tašky (s výjimkou mikrosáčků). Cena plastových odnosných tašek musí být minimálně ve výši výrobních nákladů. Vysvětlete, z jakých důvodů bylo k těmto úpravám přistoupeno, a zhodnoťte, jaké dopady může tato novela mít.
4. Na schématu níže je znázorněn vstřikovací lis na plastové výrobky. Popište schéma s využitím pojmů: násypka plastového granulátu, vstřikovací tryska, šnek, dutina formy (tvar výlisku), polovina formy

Zdroj: https://cs.wikipedia.org/wiki/Vst%C5%99ikovac%C3%AD_lis#/media/File:Injection_moulding_process.png
Hořlaviny a hašení požáru

1. Zhodnoťte uvedený text a opravte případné chyby.

Látky, které působením ohně nebo nízké teploty za normálního tlaku nehoří, doutnají a neuzenávají, se označují jako látky nehořlavé. Mezi takové látky patří většina organických látek. Za látky hořlavé se považují také látky, které působením ohně nebo vysoké teploty hoří nebo doutnají pouze neochotně a po odstranění tepelného zdroje již dále nehoří ani nedoutnají.

2. Rozhodněte u každé z uvedených látek, zda se jedná o látku hořlavou. Správnou odpověď zakroužkujte.

- Benzín – ANO/NE
- Vápenec – ANO/NE
- Chlorid sodný – ANO/NE
- Metanol – ANO/NE
- Porcelán – ANO/NE

3. Které telefonní číslo bys volal(a), abys přivolal(a) hasiče?

 b. Vysvětlete, proč jste zvolili jednotlivé hasicí přístroje.
5. Žáci dostali za úkol navrhnout postup hašení požáru pánve s olejem na sporáku v kuchyni. Který z nich navrhne správné řešení? Správnou možnost zakroužkujte.

Oskar: „Vzpomínám si, že na hašení oleje je vhodné použít práškový hasicí přístroj. Babička bydlí v bytovém domě, kde je umístěný na chodbě.“

Ema: „Mně zas děda říkal, že stačí třeba mokrý hadr, kterým se pánev zakryje.“

Natálie: „Většinou se k hašení ohně v domácnosti používá voda, pokusila bych se hořící pánev uhasit vodou.“

Patrik: „Já bych pánev vydal otevřeným oknem ven, ať dohoří na zahradě.“
4. Summary

The material offers a set of lower-secondary chemistry tests as a result of teachers’ tests improvement. To do so, a tool designed to evaluate the quality of tests was used. It is firstly described in this material, further its application on one test is demonstrated. Teachers used their own tests, used the evaluation tool and improved the test. Subsequently, they assessed the test based on its use in their practice. This work results in nine tests which are ready to use in education. Also, based on the methodology described in this material, the tool can be used by any teacher to redesign their own tests.
Vzdělávací modul Člověk a příroda ve vzdělávací oblasti Chemie

Testy ve výuce chemie: návrhy a proces tvorby

Karel Vojíř, Martin Rusek a kol.

Vydala Univerzita Karlova, Pedagogická fakulta
Rok vydání: 2019
Počet stran: 32
Formát B5
1. vydání
ISBN 978-80-7603-149-4